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Abstract— Many works are related to the analysis and 

control of either continuous or else discrete time-delay systems. 

However, the discretization of continuous time-delay systems 

has not been extensively studied. In this work, sampled-data 

time-delay systems with internal and external point delays are 

described by approximate discrete time-delay systems in the 

discrete domain. Those approximate discrete systems allow the 

hybrid control of time-delay systems. Two Numerical examples 

complete the paper, showing the correctness of the discretization 

process. 

 

Keywords— Time-delay systems; Multivariable control systems; 

Discretization; Simulation. 

 

I. INTRODUCTION 

Systems with Delay abound in the world. They appear in 

various contexts such as biological, ecological, economic, 

social, and engineering systems. Typical examples of time-

delay systems are communication networks, chemical 

processes, teleoperation systems, bio-systems, underwater 

vehicles and so on [17,19,2]. In many physical, industrial and 

engineering processes, delays occur due to the finite        

capabilities of information processing and data transmission 

among various parts of the system. Delays can arise as well 

from inherent physical phenomena such as mass transport 

flow or recycling. Also, they can be byproducts of 

computational delays and can be constant or time-varying, 

known or unknown, deterministic or stochastic, depending on 

the system under consideration. In all of these cases, the time-

delay factors have, by and large, counteracting effects on the 

system behavior which in most cases lead to poor 

performance. Therefore, the subject of time-delay systems has 

been investigated in the form of functional differential 

equations over the past three decades [22,2,3,8].The 

engineering literature dealing with time-delayed systems are 

very extensive. Most of the approaches proposed so far deal  

 

with linear time-delay control systems and, in particular, with 

the stability analysis and behavior of such systems with 

 
 

constant and/or uncertain time-delays [12,9,10]. However, it 

should be mentioned that conventional numerical techniques, 

such as the Euler and Runge-Kutta methods, have been 

employed in order to obtain a sampled-data representation of 

the original continuous-time delay-free system [5,13].All of 

these approaches require a very small time step in order to be 

deemed accurate, however this may not be the case in control 

applications where large sampling periods are inevitably 

introduced due to physical and technical limitations. 

Furthermore, the use of too many integration steps may cause 

unacceptable integration times and even the excessive 

accumulation of errors. 

With the rapid advances in the large-scale integration of 

semi-conductor devices and the resulting availability of 

inexpensive computers, there is renewed interest in the 

discrete-time approximation of continuous-time multivariable 

systems. Such models have applications in the digital 

simulation of these systems as well as in the identification of 

the system through samples of the input- output data. Further 

applications of these methods are possible in digital adaptive 

control and computer control of complex processes 

[6].Systems including time delay, due to the system 

dynamics, are widely present in the industry which imposes a 

lot of constraints that make the control and computer 

programming of such system difficult [7,14].Then the control 

of a system with a time delay is generally difficult; due to the 

constraints imposed by the time delay. These constraints can 

cause performance deterioration that leads the process to 

instability especially when operating in closed loop 

[1,23,24,25].Most physical systems, a macroscopic point of 

view, are continuous. In modern control systems, information 

is digitally processed which requires sampling signals. One 

speaks in this case of sampled or discrete systems. 

 

 

 

 For this reason we need the discretization of continuous 

linear delay systems. Other works are devoted to the study of 

discrete delay systems [11,20,16,15].The objective of this 

paper is extending the ideas in the just cited references in 

order to analyze in this paper, we consider two different 
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methods for obtaining the discrete-time delay approximation. 

These are: 

      (i) State-transition method. 

      (ii) Method based on the trapezoidal rule for integration.  

The paper is organized as follows: The next section 

discusses discretization of systems with external point delay; 

section 3 discretization of system with internal and external 

point delay; Section 4 provides a numerical examples; 

Section 5 comparing between the two methods and a 

conclusion section closes the paper. 

 

II. DISCRETIZATION OF SYSTEMS WITH EXTERNAL                                    

POINT DELAY 

 

In a digital computer, time cannot flow continuously as it 

is perceived in the physical world. The time is defined on a 

discrete set of times, which are separated by a regular time 

interval known by one sampling period. It is therefore 

necessary to define new mathematical tools adapted to 

discrete time, to represent the sampled signals and systems 

and adapt tools and methods for automatic analog 

(continuous time) in the design of digital controllers.  

Then our problem may be stated as the determination of a 

discrete time approximation corresponding to the following 

state-space equations: 

 

x( ) ( ) ( ) ( )
0 1

( ) ( )

t A x t A x t h Bu t

y t cx t

= + − +

=





�

                                          

(1) 

 

      

Where:      

0
( )A x t : Original Term state. 

1
( )A x t h−   : Delayed Term state. 

With   h qT= : a multiple delay the sampling period is an 

integer q 

T  : The sampling period assumed chosen suitably. 

, andx u y Respectively are the state vector, the vector and the 

control vector output. 

0 1
,A A  , B  and C are matrices of suitable dimensions. 

 

In the development of the discrete-time models, we have to 

assume a suitable sampling interval, denoted by T. A suitable 

criterion for the choice of T is that wT be less than 0.5, where 

w is the magnitude of the Eigen value of   farthest from the 

origin of the s-plane [6]. Among the main concerns of the 

sampling was one that is not to lose information in the 

temporal discretization of the continuous signal. For this to 

be possible, a condition to be fulfilled is that the signal that 

we must sample has a finite spectral width, it is called a 

spectrum of low-pass type. Since the spectral width of such a 

signal is defined by the interval [0, Fmax], where fmax is the 

highest frequency present in the frequency spectrum of this 

signal. This condition arises from the phenomenon of 

aliasing. In reality, all physically realizable analog signals 

spectral width is "great", although it is necessarily finite 

energy. This may arise, for example, the presence of additive 

noise or interference with amplitude spectra is not negligible 

at high frequencies. In other words, fmax is very large which 

necessarily leads to the choice of an even greater fe. If there is 

aliasing, it is not possible to return to the original signal 

spectrum. In this case, the operation changes the sampling 

characteristics of the input signal. Thus, if we do not want to 

lose information relative to the signal which is sampled, we 

must always satisfy the condition: (Fe> 2Fmax). Condition 

better known by Shannon's theorem . 

 

A. State-transition method 

 

The description of the system dynamics in the form of 

differential equations is    retained throughout the analysis 

and design. In fact, if a subsystem is characterized by a 

transfer function it is often necessary to convert the transfer 

functions equations in order to proceed by state-space 

methods. The state-transition matrix which describes how the 

state x (t) of the system at some time t evolves into the state 

x(T) at some other time T. For time-invariant systems, the 

state-transition matrix is the matrix exponential function, 

which is easily calculated. For most time-varying systems, 

however, the state-transition matrix, although known to exist, 

cannot be expressed in terms of simple functions .This is the 

most well known method. If we assume that the input is 

allowed to vary only at the sampling        instants and held 

constant during each sampling interval, we obtain the 

following equation: 

 

  
1 2 3

( 1) ( ) ( ) (k)x k x k x k q uψ ψ ψ+ = + − +                      (2)
 

[ ], ( 1)T , ( ) ( )t kT k u t u k∀ ∈ + =
                           

(3) 

Where, for notational convenience, x (kT) has been 

represented by x (k), and 

ψ = 0
1

A T
e

                                                                           
(4) 

ψ = 1
2

A T
e                                                          (5)                        

 
ψ = +∫ ∫0 1

0 03

A t A tT T
e Bdt e Bdt

                                       
(6)                                        

The matricesψ
1

,ψ
2

 and ψ
3

 can be conveniently calculated 

on a digital computer using the following series:

    

 

2 2 3 3
0 0

......
1 0 2! 3!

A T A T
I A Tψ = + + + +                                  (7)                                              

2 2 3 3
1 1 ......

2 1 2! 3!

A T A T
I A Tψ = + + + +                             (8)                      

2 2 2 2
0 01 12 ....

3 2! 2! 3! 3!

A T A TA T A T
I TBψ = + + + + +

 
 
 
 

          (9)      

 

B. Method based on trapezoidal rule of integration  
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The determination of a discrete model of a continuous 

linear or nonlinear process can be envisaged by a 

transformation on the functional matrix that characterizes the 

evolution of the autonomous regime of the studied system. It 

is in this sense that a transformation called homographic [4], 

or as transformation trapeze [18], this transformation allows 

to combine the rigorous way to a continuous system a 

discrete system. According Hung and Chou [7], one may use 

the trapezoidal rule for integrating the state equation over the 

interval kT<t< (k+ 1) T to obtain: 

( 1) ( )
( )

x k x k
x t

T

+ −
=�  : Discrete differentiation.  

( 1) ( )
( )

2

x k x k
x t

+ +
= : Average value.     

(( 1) ) ( )
( )

2

( 1 ) ( )

2

x k T qT x kT qT
x t h

x k q x k q

+ − + −
− =

+ − + −
=

 : Average value.                             

Replace ( ), ( )x t x t� and x(t h)− by their new expressions in the 

system of equation defined in (1) we have obtained:  

( 1) ( ) ( 1) ( )

0 2

( 1 ) ( )
( )

1 2

x k x k x k x k
A

T

x k q x k q
A Bu k

+ − + +
= +

+ − + −
+ +

                                 
(10)

 

Solving equation number (10) for x (k + 1) we obtain: 

[ ]

1
( 1) ( ) ( ) ( )

0 02 2

1
( ) ( 1 ) ( )

0 12 2

1
( ) ( )

02

T T
x k I A I A x k

T T
I A A x k q x k q

T
I A TBu k

−
+ = − + +

−
+ − + − + − +

−
+ −

(11) 

Then 

[ ](k 1) ( ) ( 1 ) ( ) ( )
1 2 3

x x k x k q x k q u kϕ ϕ ϕ+ = + + − + − +        (12) 

Where: 

1
( ) ( )

1 0 02 2

T T
I A I Aϕ

−
= − +

                                    
(13)

                                                                                        

1
( )

2 0 12 2

T T
I A Aϕ

−
= −

                                      
(14)

 
1

( )
3 02

T
I A TBϕ

−
= −

                                       
(15) 

  

III. DISCRETIZATION OF SYSTEMS WITH INTERNAL AND 

EXTERNAL POINT DELAYS 

 

Our problem may be stated as the determination of a 

discrete time approximation corresponding to the following 

state-space equations: 

 

x( ) ( ) ( ) ( ) ( )
0 1 0 0 1 1

( ) ( )

t A x t A x t h B u t B u t h

y t cx t

= + − + + −

=





�

                

(16) 

 

Where: 

             0
( )A x t  : Original Term state. 

             1 0
( )A x t h−   : Delayed Term state. 

             0
( )B u t  : Original Term control. 

             1 1
( )B u t h−   : Delayed Term control. 

With  
0 0

h q T=  : a multiple delay of the sampling period 

and
0

q  is an integer.    

1 1
h q T=  : a multiple delay of the sampling period and

1
q  is 

an integer. 
Note: 

0
q  and

1
q are not necessarily equal.  

 T: The sampling period is chosen suitably. 
,x u and y Respectively are the state vector, the vector and the 

control vector output. 

0 1
,A A ,

0
B ,

1
B and C are matrices of suitable dimensions. 

 

A. State-transition method 

 

The concept of a state-transition has been important in 

many theories. The state-transition matrix can be used to 

obtain the general solution of linear dynamical systems. It is 

also known as the matrix exponential. In the time-variant 

case, there are many different functions that may satisfy these 

requirements, and the solution is dependent on the structure 

of the system. The state-transition matrix must be determined 

before analysis on the time-varying solution can continue. 

Assuming that, the input is allowed to vary only at the 

sampling instants and held constant during each sampling 

interval, we obtain the following equation: 

 

( 1) ( ) ( ) (k) (k q )
1 2 0 3 4 1

x k x k x k q u uθ θ θ θ+ = + − + + −
        

(17) 

[ ], ( 1)T , ( ) ( ) ( ) ( )
1 1

t kT k u t u k and u t h u k q∀ ∈ + = − = −
     

 (18) 

Where: 

            
θ = 0
1

A T
e

                                                            
(19) 

            
θ = 1
2

A T
e

                                                             
(20) 

           
θ = +∫ ∫0 1

0 03 0 0

A t A tT T
e B dt e B dt

                        
(21)

 

           
θ = +∫ ∫0 1

0 04 1 1

A t A tT T
e B dt e B dt

                        
(22)

      

The matricesθ
1
,θ

2
,θ

3
 and θ

4
 can be conveniently 

calculated on a digital computer using the following series:
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2 2 3 3
0 0

......
1 0 2! 3!

A T A T
I A Tθ = + + + +                                     (23)

     
                                                                                

 

2 2 3 3
1 1 ......

2 1 2! 3!

A T A T
I A Tθ = + + + +                                     (24)

     
                                                                               

                                                                                              

2 2 2 2
0 01 1

2 ....
3 02! 2! 3! 3!

A T A TA T A T
I TBθ = + + + + +

 
 
 
                 

(25)
    

                                                            

 

2 2 2 2
0 01 1

2 ....
4 12! 2! 3! 3!

A T A TA T A T
I TBθ = + + + + +

 
 
 
    

             
(26) 

B. Method based on trapezoidal rule of integration  

 

   This transformation allows to associate rigorous manner to 

any continuous system, a discrete system. It is possible to 

deduce a recurrent solution describing state space of the 

evolution of a vector x (k) obtained by discretization x (t) at 

sampling instants. Using the approximations adopted in the 

homographic transformation matrix discrete model that 

describes the state space equation we obtain: 

( 1) ( )
( )

x k x k
x t

T

+ −
=�  : Discrete differentiation.  

( 1) ( )
( )

2

x k x k
x t

+ +
= : Average value.     

0 0
0

0 0

(( 1) ) ( )
( )

2

( 1 ) ( )

2

x k T q T x kT q T
x t h

x k q x k q

+ − + −
− =

+ − + −
=

: Average value.      

1 1
1

1 1

(( 1) ) ( )
( )

2

( 1 ) ( )

2

x k T q T x kT q T
x t h

x k q x k q

+ − + −
− =

+ − + −
=

 : Average value.                                          

Replace ( ), ( )x t x t� ,
0x(t h )− and

1x(t h )− by their new 

expressions in the system of equation defined in (16) we have 

obtained:  

 

1
( 1) ( ) ( ) ( )

0 02 2

1
( ) ( 1 ) ( )

0 1 0 02 2

1 1
( ) ( ) ( ) ( )

0 0 0 1 12 2

T T
x k I A I A x k

T T
I A A x k q x k q

T T
I A TB u k I A TB u k q

−
+ = − + +

−
+ − + − + − +

− −
+ − + − −

 
 

  

              
(27) 

Then 

[ ](k 1) ( ) ( 1 ) ( )
1 2 0 0

( ) ( )
3 4 1

x x k x k q x k q

u k u k q

σ σ

σ σ

+ = + + − + − +

+ + −                   
(28)

         
 

Where: 

1
( ) ( )

1 0 02 2

T T
I A I Aσ

−
= − +

                                       
(29)

     
                                                                                

1
( )

2 0 12 2

T T
I A Aσ

−
= −

                                             
(30)

                                 

1
( )

3 0 02

T
I A TBσ

−
= −

                                              
(31)

     
                                                                            

  

1
( )

4 0 12

T
I A TBσ

−
= −

                                                
(32)

      

 

IV. NUMERICAL EXAMPLES 

 

In this section two different examples of application of the 

proposed approach are presented. Those examples show the 

validity of the methodology. As a first example, the next 

system is considered by the state-space equation: 

 

( )

0 1 0 0 0
x( ) ( ) ( 0.2) ( )

2 3 1 2 1

( ) 1 1 ( )

t x t x t u t

y t x t

= + − +
− − −

=

      
      

     


�

            

(33)
  

  
In this case we are treating an example of a continuous linear 

system. A delay is only in the state which was chosen a 

sampling period T = 0.2s and applying the state-transition 

method, the following discrete time-delay system is obtained: 

 
0.9680 0.1493 1 0 0.0160

( 1) ( ) ( ) (k)
0.2987 0.5200 0.2453 1.4907 0.3947

x k x k x k q u
     
     
     

+ = + − +
− −

 (34)
  

 
The simulation result in the step responses of the continuous 

system and approximate discrete system is depicted in 

figure1. 
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 Fig. 1. Step response of the continuous and discrete time delay 

system. 

 

 

We note that the system response does not swing; that 

allows us to conclude that the system is highly damped. 

Characteristic desired system performance is specified by a 

delay time, a rise time and a settling time. Thus, very often 

the performance characteristics of the controlled system are 

specified in terms of transient response to a step input, easy 
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to generate. The delay in digital control systems is always a 

challenge to take into consideration. It introduces a phase 

shift of the signal as it can induce instability. The evolution 

of the response the field below presents a delay that does not 

degrade the performance of the system. 

 

Applying the method based on trapezoidal rule of 

integration to the system considered in the state-space 

equations (33), and keeping the same sampling period 

T=0.2s. The following discrete time-delay system is 

obtained: 

 

[ ]

0.9697 0.1515
(k 1) ( )

0.3030 0.5152

0.0758 0.1515
( 1 ) ( )

0.7576 1.5152

0.0152
( )

0.1515

x x k

x k q x k q

u k

 
+ = + 

− 

− + + − + − + 
− 

 
+  
 

           (35) 

The simulation result in the step responses of the continuous 

system and approximate discrete system is depicted in 

figure2. 

                      

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.02

0.04

0.06

0.08

0.1

0.12

Step response of  the continuous and discrete time delay system

Tim(s) (sec)

A
m

p
lit

u
d

e

Fig. 2. Step response of the continuous and discrete time delay 

system. 

 

We note that, the representation of discrete time system, in 

figure 1 and figure 2; follows the continuous time evolution 

of the system start after a while which is the value of the 

existing delay in the state equation that defines our system, 

keeping almost same stability range in both cases. 

In this case, the model is insufficient for an accurate 

representation of the closed-loop response and a more 

complex approximate discrete system should be considered 

in order to improve the result. Precision requirements will 

determine the number of terms to be considered in the 

exponential series, depending on the application. Anyway, 

simple discrete systems can be a useful tool, combined with 

robust control techniques. 

In the next example, one external and one internal delay are 

considered in the state-space equation: 

  

( )

1 1.5 0.25 0.5 0 0.5
x( ) ( ) ( 0.3) ( ) ( 0.5)

1 2.5 0.5 0.5 1 0.5

( ) 1 1 ( )

t x t x t u t u t

y t x t

− − −
= + − + + −

− −

=

        
        
        



�

       (36) 

 

In this case, the system has a different internal and external 

delay and, then, combinations of those delays appear in the 

input of the discrete approximation. Considering T =0.1s and 

applying the state-transition method. The following discrete 

time-delay system is obtained: 

 

 
( ) ( )

( ) ( )

0.9112 0.1266 1.0240 0.0519
( 1) ( ) ( )

0
0.0844 0.7846 0.0519 1.0500

0.0092 0.0937
(k) (k q )

1
0.1913 0.0947

x k x k x k q

u u

− −
+ = + − +

− −

−
+ + −

      

(37) 

 

The simulation result in the step responses of the continuous 

system and approximate discrete system is depicted in 

figure3.
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Fig. 3. Step response of the continuous and discrete time delay 

system. 

 

In practice, the sampling period Te depends on the type of 

method (chemical, thermal, mechanical, etc.) and should be 

chosen small relative to the time of the closed loop system 

response. Sampling period is too low (sampling) results  

• Closer to the continuous time, but the calculation is much 

more demanding.  

• Difficulties inherent in the methods of calculation order, 

which may lose strength. In the present case the delay is a 

multiple of the sampling period or of its value is imposed by 

the delay. We can see very clearly the importance of the 

sampling period: a lower sampling period provides 

monitoring of the response of faithful continuous system with 

a period greater. The consequence of this is that the system 

with the lowest sampling period is the one who achieve 

stability quickly. So to have the most accurate possible 

relative to the continuous time result, it will be advantageous 

not to take a sampling period too large. 

 

Applying the method based on trapezoidal rule of 

integration to the system considered in the state-space 

equations (36), and keeping the same sampling period 

T=0.1s.The following discrete time-delay system is obtained: 
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( )

( )[ ]

( ) ( )

0.9108 0.1274
(k 1) ( )

0.0849 0.7834

0.2070 0.5096
( 1 ) ( )

0 00.4352 0.4671

0.0064 0.0446
( ) ( )

10.0892 0.0425

x x k

x k q x k q

u k u k q

−
+ = +

−

−
+ − + − +

−

−
+ −+                     

(38) 

 

The simulation result in the step responses of the continuous 

system and approximate discrete system is depicted in 

figure4. 

                  

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Step response of the continuous and discrete time delay system

Tim(s) (sec)

A
m

p
lit

u
d

e

Fig. 4. Step response of the continuous and discrete time delay 

system. 

 

It can be seen in figure 3 and figure 4, that the 

representation of discrete time system follows the continuous 

time evolution of the system start after a certain time which 

corresponds to the value that is the result of the existing 

delays in both the state and the control in the equation 

defined in our system keeping almost the same area of 

stability, in both cases. But it could not present the same 

response time and the appearance of a second term; 

describing the past state of the system during a second 

sampling instant by the discretization homographic 

transformation method that requires computation of time 

additive. The effect of delay on the dynamics of a system 

depends not only on its value but also the characteristics of 

the system. Indeed, the presence of delay can affect the 

stability of the system, since its presence can cause complex 

behaviors namely oscillations, instability and degradation in 

performance. But sometimes the effect of the delay in some 

cases can be stabilizing an unstable system initially. In this 

case, we say that the delay has a stabilizing effect. 

 

V. COMPARISON BETWEEN TWO METHODS 

 

We have discussed two different methods for obtaining 

discrete time approximations for continuous-time delay 

systems. The state-transition method has much more 

complications for calculating than the homographic 

transformation method. Suggesting that the sampling period 

should be chosen over the dynamic system, depending on the 

delay term. Generally we try to choose the sampling period as 

an integer multiple of the delay in addition to the forced 

choice for dynamic system without delay. It appears that the 

model using the homographic transformation is best suited 

for numerical simulation in the case of the continuous system 

which is defined by a state model and that must be selected in 

the case of a suitable choice of the sampling period. 

 

It is clear that the value of the delay (0.2s) is shown by the 

simulation by both   discretization methods knowing that it 

did not affect the evolution of the system.   Similarly we see 

that in the second example there or delays are present in the 

state (0.3s) and in the control (0.5s) simulation shows that the 

amount of delay in the system is the result of two delays (0.3s 

+0.5 s) with a normal evolution of the dynamic system in 

time without losing performance. 

We note that depending on the value of the delay h, the 

election of this value as sampling period can be inadequate in 

the sense of the Shannon (Discretization) Theorem. Then, the 

sampling period can be chosen T = h j for some integer j, 

where T is a valid value. In general, considering systems 

given by equations (33) or (36) and T = h j , the approximate 

discrete system is given by the two methods. 

 

VI. CONCLUSION 

 

In this paper we have proposed two methods for the 

discrete time approximation of multi variable continuous-

time delay systems. If the model is given in the form of state 

equations, the trapezoidal rule requires only one matrix 

inversion, and is perhaps the most convenient for digital 

simulation. It is of interest to compare them for accuracy as 

well as convenience in computation. It is evident that the 

accuracy of the approximation will depend, to a large extent, 

on the choice of the nature of the input applied to the delay 

continuous linear system. For example, if the input is a 

constant or a piece-wise-constant function of time, the state-

transition method will give an accurate discrete time model. 

So that the discretization of the continuous delay either by the 

method of transition state or by the method of homographic 

transformation matrix linear system show that the two 

examples follow the curve form almost continuously, except 

that the first method has many more complications than the 

second calculation, suggesting that the sample period should 

be chosen in addition to the dynamics of the system, 

depending on the delay term. Usually we try to choose the 

sampling period an integer sub multiple of delay in addition 

to its forced choice for dynamic systems without delay. We 

note that despite the variation of the period allowed in the 

simulation curves obtained by the two methods are similar 

domain discretization and the method using homographic 

transformation is easier to program. Finally it appears that the 

model using the homographic transformation is best suited 

for numerical simulation in the case of the continuous system 

is defined by a state model and in the case of a suitable 

choice of the sampling period. 
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